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Manipulating Nucleotides I
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What is a mutation?

• Chromosomal scale – polyploidy, duplications, inversions, 
deletions, translocations.

• Nucleotide scale (one or more nucleotides) – insertions, deletions, 
substitutions.
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A mutation is an alteration in the genome of an organism



Effects on gene products 
• Point mutation – single nucleotide altered 

• Effect can be neutral e.g. synonymous substitution
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The Genetic code
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Synonymous substitution
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‘Silent substituion’

Protein



Codon Usage Bias 
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Some codons are more favoured than others
• Some specific codons are used more often than other 

synonymous codons during translation of genes

• Can vary within a species

• Can vary between species.

• Use of ‘non-optimal’ codons can reduce gene 
expression 

• Selection of the optimal codon usage for the host species 
during gene synthesis is a good idea when moving 
genes between species 



Effects on gene products 
• Point mutation – single nucleotide altered 

• Effect can be neutral e.g. synonymous substitution 

• Change codon to encode a different amino acid.
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Nonsynonymous mutation
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Protein

Change amino acid



The Genetic code
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Effects on gene products 
• Point mutation – single nucleotide altered 

• Effect can be neutral e.g. synonymous substitution 

• Change codon to another amino acid.

• Introduce a new stop codon i.e. ‘premature stop’ or 
‘nonsense’ mutation
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Synonymous substitution
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‘nonsense mutation’

Protein



Nonsense-mediated decay
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NMD

EJC – exon junction complex  

• NMD is a surveillance mechanism for 
errors in gene expression 

• Degrades mRNA transcripts that 
contain premature stop codons

• After splicing, exonic-junction 
complexes (EJCs) remain 20–24 
nucleotides upstream of every exon 
junction and can bind UPF2 proteins.

• If a ribosome encounters a premature 
stop codon, it stalls, allowing a 
complex with a downstream EJC/UPF2 
promoting mRNA decay through the 
SURF complex.



Nonsense-mediated decay
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• NMD is a surveillance mechanism for 
errors in gene expression 

• Degrades mRNA transcripts that 
contain premature stop codons

• After splicing, exonic-junction 
complexes (EJCs) remain 20–24 
nucleotides upstream of every exon 
junction and can bind UPF2 proteins.

• If a ribosome encounters a premature 
stop codon, it stalls, allowing a 
complex with a downstream EJC/UPF2 
promoting mRNA decay through the 
SURF complex.

NMD

EJC – exon junction complex  



Effects on gene products 
• Point mutation – single nucleotide altered 

• Effect can be neutral e.g. synonymous substitution 

• Change codon to a different amino acid.

• Introduce a new stop codon

• Frameshift mutation 
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Frameshift mutation
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• Insertion or deletion of 
nucleotides that are not in 
multiples of 3

• Changes the reading ‘frame’ and 
thus the protein sequence that 
will be produced. 

• Often results in a premature stop 
codon.

TAT TGG CTA CTA CAT
Tyr   Trp Leu  Val   His

TAT TCG GCT AGT ACA T..
Tyr    Ser Ala Ser Thr



In Person quiz
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‘Natural’ Sources of mutations

• Spontaneous mutations – chemical changes to 
nucleotides

• Replication errors

• DNA repair errors 

• Environmental mutagens – radiation e.g. Ultraviolet light, 
ionising radiation e.g. gamma radiation, chemicals that 
cand cause oxidative or other damage.

• Median somatic mutation rate per base pair is 2.8 x 10-7 

per generation for humans. Order of magnitude lower in 
germline cells.
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Pass the sunblock



Effects of mutations

• Loss-of-function (LOF) mutations - gene product 
function reduced (partial LOF, hypomorph) or no 
function (null allele, amorph). If no protein 
produced at all, called ‘protein null’. 

• Often recessive (i.e. both alleles must to be mutant 
to observe a phenotype) but can be 
haploinsufficient (loss of one allele can cause a 
phenotype)

• Human disease examples – Recessive e.g. Cystic 
fibrosis. Haploinsufficient e.g. DiGeorge syndrome 
(22q11 deletion)
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Not usually superpowers



Effects of mutations
• Gain-of-function (GOF) mutations (hypermorphs).

• Gene product activity is increased. Examples include 
mutations that increase protein expression or 
increase protein activity. 

• GOF mutations often produce dominant phenotypes 
(i.e. one mutated allele is sufficient to produce a 
phenotype).

• Related are Neomorphs – mutations causing novel 
gene product functions (e.g. expression outside of 
normal tissues, interaction with novel proteins). 

• Human disease example - Brugada syndrome (GOF 
mutants in KCNE3) can cause sudden cardiac death 
in young people
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Heart
Electrical
System 



Effects of mutations
• Dominant Negative (DN) mutations

(antimorphs) produce altered gene products 
that act antagonistically to inhibit to the normal 
gene product.  

• Mutations usually have an altered molecular 
function (commonly reduced activity)

• DN mutations often produce dominant 
phenotypes (i.e. one mutated allele is 
sufficient to produce a phenotype).

• Human disease example - Marfan syndrome
(Dominant negative mutants in FBN1), affects 
connective tissue. 
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Genetic Model Organisms
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Whistle-stop tour of genetic model organisms
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Single cell model organism

Easy to culture, doubling time at 
30°C of ~90 minutes

Genome size 12 Mb, 16 
chromosomes.

6604 protein coding genes, ~2000 
non-coding genes, 

Mutants in every gene available

Saccharomyces cerevisiae (Bakers yeast)



Whistle-stop tour of genetic model organisms
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1000 somatic cells in adults plus 
1000-2,000 germ cells

Generation time 3 days at 25°C

Genome size 100 Mb, 12 
chromosomes

20,470 protein coding genes, ~1300 
non-coding genes, mutants in 
most genes available

Caenorhabditis elegans (nematodes)



Whistle-stop tour of genetic model organisms
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>million cells

Generation time 10 days at 25°C

Genome size 180 Mb, 4 chromosomes

13,968 protein coding genes, 4,044 non-
coding genes, mutants in most genes 
available

Drosophila melanogaster (fruit flies)

https://drosophila.epfl.ch



Whistle-stop tour of genetic model organisms
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millions of cells

Generation time 3 months 

Genome size 1.4 Gb, 25 chromosomes

25,545 protein coding genes, 6,599 non-
coding genes, mutants in some genes 
available

Danio rerio (Zebrafish)



Whistle-stop tour of genetic model organisms
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Millions of cells

Generation time 10 weeks

Genome size 2.6 Gb,  20 chromosomes

22,213 protein coding genes, 17,398 
non-coding genes, mutants in some 
genes available

Mus Musculus (mice)



Whistle-stop tour of genetic model organisms
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millions of cells

Generation time 6 weeks

Genome size 1.35 Gb, 5 chromosomes

27,655 protein coding genes, 5,178 non-
coding genes, mutants in some genes 
available

Arabidopsis thaliana (Thale cress)
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29



Transgenesis
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What is Trangenesis?
• The process of introduction of a transgene into an organism

• A transgene is any exogenous genetic sequence either derived 
from the same species (e.g. an extra copy of a gene), a different 
species or an artificial sequence.

• Most transgenic animals are generated for research but transgenic 
animals (GMO – genetically modified organisms) are used in 
agriculture.   
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Transgene Donor constructs 
• Easy to work with - Convenient size 

(generally 1,000-20,000 bp), grow in 
bacteria (often e.coli).

• Self-replicating - endless number of 
copies.

• Stable – store in freezer or even dried.

• Useful for lots of things, not species 
limited, many types of sequences 
proteins, RNA’s etc. etc.

• Larger DNA sequences are difficult. 
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Plasmids



Transgene Donor constructs 
• Cos sequence containing plasmid

• Can replicate like a plasmid but unlike 
plasmids can be packaged in phages.

• Can accommodate larger DNA fragments 
ranging in size from 30 to 45 kb.

• DNA fragments have to be introduced by 
restriction digestion.

• Most useful for larger genomic DNA 
fragments, less so for engineered 
constructs. 
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Cosmids



Transgene Donor constructs 
• Bacterial Artificial Chromosome

• Artificial circular chromosomes based on E.coli F-
plasmids 

• Can accommodate larger DNA fragments ranging in 
size up to 300 kb.

• YACs are similar but grow in Yeast not bacteria.  Can 
accommodate up to 2000 Kb

• DNA fragments have to be introduced by restriction 
digestion.

• Useful for large genomic DNA fragments, often used 
as donors for mouse genetic engineering

• Not useful for small constructs 
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BACs & YACs



Transgenic Techniques - mammals

• A plasmid, cosmid or BAC is 
microinjected 

• DNA is introduced into the pronucleus 
of a developing zygote

• Eggs that survive the injections are 
transferred into the oviduct of a foster 
mother.

35

DNA microinjection



Transgenic Techniques - mammals

• Widely used 

• The amount of DNA delivered per cell is 
not limited 

• Broadly useful across mammalian hosts

• Low success rate

• Mosaic founders

• Random integration 
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DNA microinjection



Transgenic Techniques - mammals

• Commonly use γ-retroviruses (gamma-
retroviruses)

• Mostly derived from MoMLV (Moloney 
Murine Leukemia Virus) or MSCV 
(Murine Stem Cell Virus) sequences

• Sequences between and including the 
LTRs is integrated into the host genome 
upon viral transduction
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DNA microinjection with retrovirus 



Transgenic Techniques - mammals

• Virus integration is very efficient 

• The amount of DNA delivered per cell is  
limited by virus size max 8.5Kb, but 
~3Kb is better 

• Random integration

• Transgene can be silenced by DNA 
methylation 
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DNA microinjection with retrovirus 



Transgenic Techniques - transposons
• Transposons, ‘jumping genes’, are genetic 

elements that can translocate within the genome –
Selfish genetic elements

• Transposition process requires sequences at the 
ends of the transposon and a specific transposase 
protein 

• Can be engineered to replace internal sequences 
with transgenes

• Have specific sequence preferences e.g. PiggyBaC
- TTAA 

• Random insertion
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Transposons



Transgenic Techniques - mammals

• ES cells are derived from cells of the 
early embryos (late blastocyst stage)

• Have the capacity to self-renew 
indefinitely. 

• Pluripotent i.e. can differentiate into all 
cell types in the body including germ 
cells
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Embryonic Stem Cells (ES cells)

= Inner Cell Mass



Transgenic Techniques - mammals
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Introducing transgenes using ES cells



Transgenic Techniques - mammals
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Introducing transgenes using ES cells



Transgenic Techniques - mammals

• Efficient through use of cell selectable 
markers

• Transgene location can be confirmed in 
ES cells

• Takes longer to have completely 
transgenic animals.
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Introducing transgenes using ES cells

= Inner Cell Mass



Transgenic Techniques - mammals

• Homologous recombination is a series of 
processes that enable the repair of DNA and 
allow interstrand crosslinks. 

• essential to exploit the redundancy of genetic 
information that exists in the form of sister 
chromatids or homologous chromosomes

• Very important when both strands of the DNA 
double helix are compromised (double-strand 
breaks).

• Used during DNA replication somatic cells and 
during meiosis.
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Targeting transgenes to specific locations



Transgenic Techniques - mammals
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Targeting transgenes to specific locations

DdDouble strand break

Homology Arm Homology Arm



Transgenic Techniques - recombinase
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Drosophila - Targeting transgenes phiC31

• A preplaced (with transposon) attP sequence (attP) acts as the recipient site in the 
Drosophila genome. These sequences are derived from phages. 

• An attB plasmid containing both a transgene and donor sequence (attB) is injected 
togthere with φC31 integrase mRNA into attP-containing recipient embryos

• This results in the site-specific insertion of the transgene into the attP site. 



How do I know my animal is transgenic? 
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• Molecular confirmation e.g. PCR, 
commonly used in mice 

• Selectable marker e.g. GFP

• Rescue of a mutant phenotype e.g. coat 
colour, eye colour 



Controlling transgene expression -
space
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• Binary gene expression system

• Yeast derived Gal4 transcription factor is 
expressed under control on tissue specific 
enhancer sequence 

• Transgene has Gal4 binding UAS (upstream 
activating sequence) before gene to be 
expressed.  Without Gal4 – no expression

• In tissues that express Gal4, gene is 
expressed.  Many UAS regulated genes can be 
expressed simultaneously. 



Controlling transgene expression -
time
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• Tet-Off

• Tetracycline-controlled transactivator (tTA) of 
transcription regulates gene expression. 

• In the absence of the drug doxycycline (Dox), tTA
dimers specifically bind to tetO sequences, 
activating transcription of the target transgene 

• When Dox is provided , tTA undergoes a 
conformational change and cannot 
bind tetO sequences.

• Tet-On and other variants available



In Person quiz
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Gene Therapy
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Gene Therapy

• Gene therapy uses genetic technology 
to treat, prevent or cure a disease or 
medical disorder. 

• Commonly utilises additional new 
copies of a gene to compensate for a 
defective or absent gene in a patient
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Treatng humans with transgenes



AAV

• Adeno-associated viruses (AAV) viruses 
that infect humans and some other 
primates. 

• Are not thought to cause disease but 
can elicit a mild immune response.

• Single-stranded DNA genome of 4.8 Kb

• Does not integrate into genome 
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Targeting transgenes to specific locations



AAV
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AAV
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SMA Type I

Severe form
Never sit

Limited life expectancy
Respiratory failure

Birth Prevalence 60% 
 

SMA Type II

Intermediate form
Sitting or standing 

Life expectancy shortened
Skeletal deformities

Birth Prevalence 27% 
 

SMA Type III

Mild form
Walkers at some point

Life expectancy (nearly) normal
Proximal weakness prominent

Birth Prevalence 12% 

Spinal Muscular Atrophy (SMA) 



SMN2 SMN1
*T

5% 95%

SMN SMN∆7

gene

mRNA

protein

SMA

Reduction of SMN (Survival of Motor Neuron)causes SMA



Gene Therapy for SMA



Gene Therapy for SMA



AAV gene therapy 

• Single administration

• Does not integrate – could cause mutation.

• Different types of manipulations can be 
achieved e.g. overexpression or reduction

• Can target cells hard to access with proteins 
e.g. brain 

• May be faster to move from animal model to 
therapy – i.e. no slow drug development 
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Advantages 



AAV gene therapy 

• Small insert size

• Viral vectors have tropism for some cells.

• Hard to target large numbers of cells (e.g. entire 
brain in adults)

• Expression levels and pattern of gene may not be 
correct

• Non-integrating virus like AAV will be lost 
eventually to cell division.

• Expensive – SMA treatment was originally $2M!
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Disadvantages 



Thank You & Questions
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